Evaluator
loss_delta(_, __, model, parameters, df=None)
¶
This evaluation function calculates the loss delta between the training and test set. This delta describes how well the model can distinguish between the categories of the target variable.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_ |
None
|
Not in use. Needed by Pytorch-ignite. |
required |
__ |
None
|
Not in use. Needed by Pytorch-ignite. |
required |
model |
Autoembedder
|
Instance from the model used for prediction. |
required |
parameters |
Dict[str, Any]
|
Dictionary with the parameters used for training and prediction. In the documentation all possible parameters are listed. |
required |
df |
Optional[Union[dd.DataFrame, pd.DataFrame]]
|
Dask or Pandas DataFrame. If it is not given,
the data is loaded from the given path ( |
None
|
Returns:
Type | Description |
---|---|
Tuple[float, float]
|
Tuple[float, float]: |